Compressed Siorage of TRANS MS Plans

|

|
-
-
=
-
—-—
.
-
.
-
.
e
=
e
=
.

B. W. Bush
Los Alamos National Laboratory/
6 February 1997

Page 1 of 22

II.IIIIIIIIIM“MM. m

Abstract

T
tIIIIIIIIIIII

|
—
—|
—
—
——
—
—
—

There exist numerous methods for storing TRANSINMS plan
data. This presentation outlines some of them anad compares
thelr storage requirements for a real-life plan set containing
nearly 300,000 plans. We find that practical methods of plan
compression can significantly reduce the amount of storage (in
memaory or on disk) needed. to store plans.

Page 2 of 22

Outline

maotivation
Information-theoretic approach
storage methods
o link ID (ASCII)
o [ink ID: (binary)
s unigue link ID: (binary)
s run-length encoding or link ID (ASCII)
s turn (ASCII)
s {turn (binary)
s Huffman turn compression. (binary)
* oOther
comparison. study.
summary comparison of methods

future work

T
- tﬂ!!llllllll

B

—

—|

—

—

—

——

—
—
—

Page 3 of 22

Votivation

Over the past two years, there has been much discussion within
the TRANSIMS team concerning how. plans can be storead
efficiently.

Plan data currently requires a lot of storage, whether on disk or
In memaory.
o |t takes 100-250 MB (depending on. iile format) to store. the
~300,000 plans used in the DEW case study; these represent the

plans that start between 5AM and 10AM and pass through the 25
square mile study area.

o There are 5,886,500 person-trips per day. in the Portland area.

Information-theoretic technigues can be applied. to plan sets to
understand the redundancy in and other characteristics or plans.

Y
tIIIIIIIIIIII

4.
|
[|
[|
[|
—|
[|
[|
[|
[|
[|
[|
[|
[|
[|
[|
[|
[|
[|
[|
|

[For now, we only consider the storage of trajectory information (i.e., the sequence of links in the
plan) and ignore the storage of the expected arrival time at each link in the plan.]

Page 4 of 22

| nfermation-Theoretic Approach

T
tIIIIIIIIIIII

4.
|
[|
[|
[|
—|
[|
[|
[|
[|
[|
[|
[|
[|
[|
[|
[|
[|
[|
[|
|

Information Is stored, or coded, as a structured collection (a
message) of primitive symbols.

Symbols belong to an alphabet.
NMessages typically have non-random statistical properties.

o The frequency distribution of symbols Is nen-unirerm.

o Correlations exist between the symbols at various locations in a
message.

The Information content orf a message can be measured and the
knowledge obtained about Its structure can be. exploited to
construct better alphabets for the storage. of the: information.

Page 5 of 22

Link ID (ASCII)

T
tIIIIIIIIIIII

B

—

—|

—

—

—

——
—
—

This method simply stores the succession of link IDs (numbers
between 1 and 2°?2— 1) as space-delimited ASCII text.

This is similar to the current TRANSIMS ASCII planner output
file format.
Information Is stored inefficiently.

o MNMany of the symbols in the alphabet (the ASCII character set)
never appear in the message.

The formatted data Is easy. to view/modify manually with a text
editor.

Example:

51743400 51743508 51951500 5000005 5000012 5000013 4950506
4950509 4950510 4951604 4951805 4901500 4902003

Page 6 of 22

Link ID. (lornary)

This method stores the succession. of link IDs as a series or 32-
bit binary words.

This Is similar to the current TRANSIMS binary plan file format.

Information Is stored inefficiently.
o MNMany of the symbols in the: alphabet (32-bit binary words) never
appear in the message.

The formatted data requires no special pre/post-processing by
the TRANSIMS microsimulation/planner.

Example:

03158AA8,, 03158814, 0318696C,; 004C4B45,5 004CABAC 4
004C4B4D,; 004BEIEC,; 004BE8IED,; 004BEIEE ,; 004BSEFC,,
004B8EFD,, 004ACAT7C,; 004ACCT7 3,

T
tIIIIIIIIIIII

4.
|
[|
[|
[|
—|
[|
[|
[|
[|
[|
[|
[|
[|
[|
[|
[|
[|
[|
[|
|

Page 7 of 22

Unigue Link I D (binary)

T
tIIIIIIIIIIII

4.
|
[|
[|
[|
—|
[|
[|
[|
[|
[|
[|
[|
[|
[|
[|
[|
[|
[|
[|
|

A typical network only Uses a fraction of the possible link IDs (3
parts-per-million in. the plan set we looked. at).

One can reduce the storage. required. for link IDs by temporarily.
renumbering them consecutively when. they are stored.

Information Is stored inefficiently.

s Strong correlations exist between consecutive alphabetic symbols
(links) in the message.
The correspondence between the original link IDs and. the
renumbered ones must be stored. in.an auxiliary table, so the
format requires pre/post-processing by the TRANSIMS
microsimulation/planner.

Example:

013A,5 9B39,, 7268, 0021 ,5 DD3F s 42F 7,5 8A11,5 92FA, s 73E9,,
F2F0,5 5529,5 6480, 4AALs

where. uniqgue. link IDs map. into original link IDs via 013A,s —
03156AA8,, 9B39,,— 03158B14,,, etc.

Page 8 of 22

AS DE: Sraight-Through Links

Y
tIIIIIIIIIIII

4.
|
[|
[|
[|
—|
[|
[|
[|
[|
[|
[|
[|
[|
[|
[|
[|
[|
[|
[|
|

We use the following conventions for labéeling turns ana
determining the straight-through link:
s (Consider the outgoing links at a node with allowed movements from a

given incoming link.
The straight-through link is the link of the same functional class with the
smallest deflection angle, provided the deflection angle is less than
60°.
If there Is no outgoing link of the same: functional class, then the

straight-through link is the outgoing link with the smallest deflection
angle, also provided the deflection angle is less than 60°.

If- all outgoing links have deflection angles greater than 60°, then no
straight-through link is defined.
The straight-through direction is the angle of the straight-
through link; If one s defined, or the angle of the incoming link,
otherwise.

This scheme Is a slight variation of the definition developead by
Ron Smith and Kathy Berkbigler.

Page 9 of 22

Run-Length Encoding of Link ID (ASCII)

Vehicles mostly travel straight through intersections. about 80%
of the movements In. the plan set we' looked: at are straight-
through movements.

One can reduce the number of links stored by assuming the
straight-through movement as the derault at an intersection and
storing only non-default movements.

Information Is stored inefficiently.

» Correlations exist between consecutive alphabetic symbols (links)
In the message.

o MNMany ofr the symbols in the alphaber (the ASCII character set)
never appear in the message.

The formatted data Is possible to view/modify manually with. a
text editor If a map. of the road network Is available.

Example:

51743400 [51743508 51931500] 5000005 [5000012 5000013
4950508 4950509 4950510] 4951804 4951805 [4901500] 4902003

T
tIIIIIIIIIIII

B

—

—|

—

—

—

——
—
—

Page 10 of 22

AS DE: LLabéeling Turns

T
tIIIIIIIIIIII

4.
|
[|
[|
[|
—|
[|
[|
[|
[|
[|
[|
[|
[|
[|
[|
[|
[|
[|
[|
|

Turms are numbered relative to the straight-through direction,
With consecutive positive Integers assigned to left turns anad with
consecutive negative. integers assigned to rght turns.

The diagram below shows a path throtgh. the road network
(denoted by the arrow) along with the numbering of the turms;
the solid and dashed road segments represent links of different
functional classes.

Page 11 of 22

Turn (ASCII)

T
tIIIIIIIIIIII

B

—

—|

—

—

—

——
—
—

Path information can be encoded it by labeling the sequence of
turns in. the plan.

We can assign any turn an integer value that must be
Interpreted. in the: context of the intersection and incoming link
where the! turn takes place.

The integer values for turns can be represented as an ASCII
sequence of digits.
Information. Is stored inefficiently.

s MNMany ofr the symbols in the alphaber (the ASCII character set)
never appear in the message.

o The frequency of the symbols Iis highly non-uniform.
The correspondence between the turns anad link-to-link
movements must be stored. in . an auxiliary table, so the format

requires pre/post-processing by the TRANSIMS
microsimulation/planner.

Page 12 of 22

Turn (ASCII) — continued

The formatted data Is easy. to view/modify manually with a text
eaitor If a map of the road network Is available.

Example:

001000002-101

where! turn 0 coming from. link 51743400 means to go to link
51743508, turn' 1 coming from link 51931500 means to go. to link
5000005, etc.

T
tIIIIIIIIIIII

—

|

E—
—
—
—
]
—
—
—
—
—
—
—
—
—
—
—
—
]
—
—

Page 13 of 22

Turn (binary)

-
— —
|
|
| —
|— —
| —
|
| —
_—
[|
[|
[|
[|
I
[|
[|
[|
[|
[|
[|
[|
[|
[|
[|
1}
[|
[|
[|
[|
|

This method stores the turns in 4-bit binary half-bytes.

Information Is stored inefficiently.

o The frequency of the symbols Iis highly non-uniform.

o Correlations exist between consecutive alphabetic symbols in the

message.

The correspondence between the turns anad link-to-link
movements must be stored. in . an auxiliary table, so the format
requires pre/post-processing by the TRANSIMS
microsimulation/planner.

Example:

0000, 0000, 0001, 0000, 0000, 0000, 0000, 0000, 0010, 1001, 0000,
0001,

where! turn 0000, coming from! link: 51743400 means to go to. link
51743508, turn 0001, coming from link 51931500 means to go to
link 5000005, efc.

Page 14 of 22

Huffman Turn Compression (loinary)

Certaln series of turns in a plan set are more common. than
other series: about 30% of the length-eight series in the plan set
we looked at are eight consecutive straight-through movements.

One can construct a binary representation or the series where
the number of bits needed to represent a series of turns Is
Inversely related to the frequency or the Series.

o Measuring the frequency or all or the turn series or a given length.

o Each series Is considered a symbol in the alphabet from which the
plans are constructed.

The optimal binary. encoding or the alphabetr for the plan set Is the
Huffman Code for the alphabet.

The correspondence between the binary code and the. turn
series must be stored in an auxiliary table, so the format
requires pre/post-processing by the TRANSIMS
microsimulation/planner.

T
tIIIIIIIIIIII

B

—

—|

—

—

—

——
—
—

Page 15 of 22

Huffman Turn Compression (binany) — theory

Represent the binary code as a binary tree.

The alphabetic symbols in the message are. at terminal nodes in
the tree.

The depth of a symbol is related to its relative. freqguency by d. ~
- /ng f/

The overall number of bits necessary to encode the message. /s
2 fd ~—2flog, f.=H, I.e., the message’s entropy.

E
|
|
| —
|— —
| —
|
| —
_—

[|

[|

[|

[|

I

[|

[|

[|

[|

[|

[|

[|

[|

[|

[|

1}

[|

[|

[|

[|

|

Page 16 of 22

Huffman Turn Compression (binany) — example

Consider single turns (the length
of the turn series Is unity).

NMeasure the frequencies of the

Construct the Huffrman code by,

combining the: least-frequent —
pairs iteratively into a binary. tree:

turn -3' — 010010,
turn -2 — 01000,
turn -1 - 00, | :

turn 0 - 1,

turn +1 - 011,

turn +2 — 0101,

turn +3 -~ 010011,
Encode the data:

1,1,011,1,1,1, 1, 1,0101, 00, 1,
011,

(I
tIIIIIIIIIIII

—

|

E—
—
—
—
]
—
—
—
—
—
—
—
—
—
—
—
—
]
—
—

Page 17 of 22

Other Methods

T
tIIIIIIIIIIII

4.
|
[|
[|
[|
—|
[|
[|
[|
[|
[|
[|
[|
[|
[|
[|
[|
[|
[|
[|
|

A slightly less optimal Huffrman code can be constructed from. a
small sample (1%, for example) of the plan set, so that encoding
can take place as plans are generated.

It s probably possible. to construct variations on the Huffman
encoding scheme to take better account of the correlation in. turn
series by allowing variable-length turn series; this will reduce the
number of low-frequency series in. the: Huifman code.

It may be practical to create a separate length-onée. or length-two.
Huiffman code for each intersection—so: far we have only
considered codes globally applicable. to the whole road network.

One can construct a Huffman code based. on. link ID.
The Lempel-Ziv (LZ) algorithm can be applied to a plan set.

Page 18 of 22

Plan Set fior Comparison Siudy,

file: /transims/output2/segovia/PlanSets/12-25-96-k5
247,620,952 bytes (ASCII)

98,422,112 bytes (binary)

294, 702 plans

15,112 498 steps

12 617,796 turns

14, 750 links

1

—

|

E—
—
—
—
]
—
—
—
—
—
—
—
—
—
—
—
—
]
—
—

Page 19 of 22

Comparison Suady Results

—

|

E—
—
—
—
]
—
—
—
—
—
—
—
—
—
—
—
—
]
—
—

orage Method

Estimated Plan
Set Size (MB)

k ID (ASCII)

91.79

Link ID (binary)

52.45

Unique Link ID (binary)

22.70

Run-Length Encoding of Link ID (ASCII)

17.67

Turn (ASCII)

12.81

Turn (binary)

4.81

Huffman Turn
Compression (binary)

Series Length

Number of Unique
Series

7

o4

268

949

2778

6945

14924

O IN[O|OTB[WIN[F

28789

Page 20 of 22

Comparison of Methods

1

L i

—
—
——
—
—
—

orage Method

Advantages

Disadvantages

k ID (ASCII)

viewable with text editor
link queries possible

e requires a lot of storage

Link ID (binary)

link queries possible

requires a lot of storage

Unique Link ID (binary)

link queries possible

requires moderate storage

Run-Length Encoding of Link
ID (ASCII)

eliminates simple
redundancy

requires moderate storage
link queries not possible
hard to detect invalid
plans

Turn (ASCII)

viewable with text editor

link queries not possible

Turn (binary)

requires little storage

link queries not possible

Huffman Turn Compression
(binary)

requires near-minimal
storage

impossible to code
invalid plans

link queries not possible
preprocessing required
before storage

Page 21 of 22

Future \Work

T
tIIIIIIIIIIII

—

|

E—
—
—
—
]
—
—
—
—
—
—
—
—
—
—
—
—
]
—
—

Consider additional storage methods, including “lossy’” methods
that discard information.

Consolidate/package the C++ classes used for these
experiments.

Study how: to store efficiently link arrival times in plans.

Investigate whether similar methods can be applied to
microsimulation output.

Page 22 of 22

	Compressed Storage of TRANSIMS Plans
	Abstract
	Outline
	Motivation
	Information-Theoretic Approach
	Link ID (ASCII)
	Link ID (binary)
	Unique Link ID (binary)
	ASIDE: Straight-Through Links
	Run-Length Encoding of Link ID (ASCII)
	ASIDE: Labeling Turns
	Turn (ASCII)
	Turn (binary)
	Huffman Turn Compression (binary)
	Theory
	Example

	Other Methods
	Plan Set for Comparison Study
	Comparison Study Results
	Comparison of Methods
	Future Work

